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Abstract. Employingtechniquesrecently developedby D. Kaiish for Riemannian
manifolds, weobtaina focalMorseindextheorembranullgeodesicsegmentinitially
andterminallyperpendiculartospace/ikesubmanifoldsofarbitrary codimensionin a
generalspace-time.

SECTION 1: INTRODUCTION

Let $ : [0, 1] —~ (M, g) be a null geodesicsegmentin an arbitrary space-time

of dimensionn ~ 3 andlet K1, K2 be spacelikesubmanifoldsperpendicularto /3

at f3( 0) and ~3(1), respectively.The purposeof this paperis to extendthe conjugate
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point Morseindex theorem for a null gcodcsicsegment/3 0, II —~ (M, g) givcn in

Bccm andEhrlich 131, cf. [4, Section9.3] to the focal caseof variationsperpendicular

to K
1 and K2, assumingthat t = I is not a K1-focal point to = 0 along /~.

To gain a perspectiveon the focal index theory, we review certainaspectsof the

conjugatepoint Morsetheory for a unit speedgeodesic c : [a, b[ (N, go) in a
Ricmanniarimanifold (N, g0). In the conjugatepoint case,oneconsidersthevector

spaceV0~-(c)of continuous,piecewisesmoothvector fields Y along c perpendicular

to c with boundaryconditions Y( a) = Y( b) = 0 andthe associatedindex form

I V0~(c)x V0-’-( c) —f R arising from the secondvariationof arc length andgiven by

(LI) I(X,Y) f(c0(X~1’) ~g0(R(X,c’)c’,Y))dL

The index form (1.1) is negativesemi-definiteup to andincluding the first conjugate

point to t = a along c, so that it is sensibleto define the index Ind ( c) of c by

lnd (c) = sup { dim A; A is an ~ vectorsubspace

of V~(c) on which I is positivedcfinite~

Subdividingthe geodesicc into a finite numberof segments,eachcontainedwithin

a geodesicallyconvexneighborhood,andapproximatingpiecewisesmoothvariational

vectorfields by piecewisesmoothJacobivectorfields, M. Morseobtainedtheimportant

resulttha md (c) is finite andis in fact givenby summingthe multiplicitics of conjugate

points to t = a along c in (a, b) i.e..

lnd(c) = dim J1(ct
te( ~

where J1(c) denotesthevectorspaceof smoothJacobifields J along c with J a) =

J(t) = (Y Important in Morse’s proof of the index theoremis the resultthat if c is

restrictedto [a, t[ for any t E [a, bJ, thenthe restrictedindex forni

(1.2) f(() := md (~~)
is nondecreasingas a function of t andis left continuous. (Also used is the fact that

the augmentedor extendedindex f0(L) = lnd0 (~~ is nondecreasingand right
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continuous,andfinally, f0(t) — f(t) = dim J~(c).)Geometrically,if a family y(t)

of piecewisesmoothJacobifields along c tat] with y(t)(t) 0 is considered,then
as t —~ t0, onehas I(Y~, Y~)—* I(Y

0~~,y(to))

In BeemandEhrlich [4, chapter9], it was shownthat the proofmethodof Morse for

theconjugatepointRiemannianindex theorymay beextendedto a timelike geodesic
segmentor to a null geodesicsegmentin an arbitraryspace-time.Thekey observation

herewa~that theappropriateanalogueof (1.2) definesanondecreasingfunctionwith the
samecontinuity propertiesas in the Riemanniancase,providedthat a quotientbundle

constructionsuggestedby GeneralRelativity theorywasemployedin thenull case.
Theindex theory for the variationalproblemwith geodesicc : [a, b] —~ (N, go)

perpendicularat p = c(a) to a submanifold K
1 and at q = c(b) to a submanifold

K2 of theRiemannianmanifold (N,90) hasbeenfoundto bemorecomplicatedusing

Morse’sapproachfor two reasons.First, togeneralizeMorse’sconjugatepointapproach
and studythe index of c tat]’ a <<geometricallymeaningful>>submanifold K(t) per-

pendicularat t to c with K(t) —~ K2 as t —~ b needsto be constructed.Then
K1, K( t) -Jacobi fields needtobe studied,ratherthanthesimplerconjugatepointcon-

dition y(t) (t) —* 0 as t —~ t0 for afixed t0 E [0, 11. This wasdoneby Ambrose[2]
usingthegeodesicflow of the normalbundleto K1. This constructionleads,however,

to technical difficulties at the K1-focal points at which the submanifoldsK(t) may

losedimensionanddifferentiability. Forthis purpose,Ambrose[2] introducedabound-

ary condition asa pair of operatorsS1,S2 : (c’(t))-’- —+ (c’(t))’ satisfyingcertain
propertiesvalid evenif t is a K1-focal point. In the case that t is not a K1-focal
point, S1 correspondsto theprojectionmapof (c’( t) ) -‘- onto T~t)( K( t)) and S2 to

thesecondfundamentalform of K( t) as a submanifoldof (N, g0).

A secondcomplicationin the focal pointindex theoryis that theindex function f(t)

definedby analogyto(1.2) is nolongersonicely behaved.In 1961,Ambrose[2] studied

this problemby breakingup the index functionasa sumof theordersof whatAmbrose
calls the K1, K2-conjugatepoints anda convexity term arising from the difference
in secondfundamentalformsof K1 and the K(t)’s. Usingthis approach,Ambrose

showedthat the mdcx functionwas nondecreasing,but failed to havethe left and right
continuitypropertiesof the indexandaugmentedindex in the simplerconjugatepoint

problem. In 1977,Bolton [6] obtainedan index theoremusingsubdivisionarguments
like Morse andAmbrose,but working with an index function which fails to benon-
decreasing.In 1984, Kalish [10] gavea new proofof the Morseindex theoremfor a

geodesicc: [a, b] —~ (N, g0) in a Riemannianmanifold withperpendicularendmani-
folds K1, K2 providedthat t = b is nota K1-focal pointto t = a along c. Kalish’s

proofavoids the useof subdivision argumentsand henceavoids the needto definea

family K(t) ofsubmanifoldsperpendiculartoc(t) as in [2], [6].

It is this third approachof Kalish [10] which we show in the presentpapermay
be adaptedto the caseof a null geodesicsegment/3 : [0, 1] —+ (M, g) in an arbi-
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trary Lorentzianmanifold ( M, g) with spacelikeendmanifoldsK1, K2 orthogonalat
/3(0), /3(11) respectivelyto /3, againsupposingthat t = I is not a K1-focal point to

= 0 along /3. TheproofentailsadoptingKalish’s argumentsto thenull quotientbun-

dle settingandto K1-vector classes.Similarresultshold for arbitrarytimelike geodesic

segmentswith spacelikeendmanifoldsin generalspace-times.

SECTION 2: PRELIMINARIES

Let (Mg) bea connectedLorentzianmanifoldof dimensionn ~ 3. Thus M is a

smoothmanifold with a countablebasisanda smoothLorentzianmetric g of signature

(_ , + +). Let D denotetheLevi-Civita connectiondeterminedby g. A nonzero

tangentvector v E TM is said to betimelike (resp. nonspacelike,null, spacelike)if

g(v,v) < 0 (resp. < 0,= 0,> 0). An immersedsmoothsubmanifold f : K
(M, g) is said to be spacelikeif thepull backmetric fg for K is positive definite.

As usual,we will identify K and f( K) andthusassumeK is containedin M.

Let /3 : [0, b] —* (M, g) bea fixed null geodesicsegmentandlet K be aspacelike

submanifoldof dimensionk of (M,g) with /3’(O) perpendicularto K at p := ~3(0).
From this perpendicularity, k < n — 2. We denoteby V-’-(13) the R-vectorspace

of continuous,piecewisesmooth vector fields Y along [3 with g(Y,8’) = 0 and

V’(/3,K) := {Y E V’(/3):Y(O) E T~K},V~(/3,K)= {Y E V
1([3,K);Y(b) =

0 }. Recall that a Jacobifield J along [3 is a smoothvector field satisfying the dif-

ferential equation J” + R(J,13’)f3’ = 0. We will adopt the sign conventionon the

secondfundamentaltensorS$(
0) T~K—~ T~Kthat Sfl(o)I := _(D1N)T where

T : T~M—* T~Kdenotestheprojection map and N is any local vector field normal

to K with N(p) = /3’(O). With this sign convention,we maketheusual

DEFINITION 2.1. A (smooth)Jacobifield J E V’(/3, K) is a K-Jacobi fieldif J(0) E

T~Kand J’(O) + S~(Q)J(0)E (T~K)~.Also t0 E (0,b] is said tobea K-focal
point along [3if thereexistsa nontrivial smooth K-Jacobi field I E VL(8, K) with

J(t0) = 0

Requiring I e V~([3, K) in Definition 2.1. makessensebecauseills easilychecked

that if J is a smooth Jacobifield along [3satisfying 1(0) E T~Kand J( t(~) = C)
for some (~> 0 then J is perpendicularto [3’ Secondly,it may he checkedthat it

dim M = 2 and J is asmoothJacobifield along[3with J(0) e T7K and .R ~ = C)
for sonic t0 > 0, then I = 0. Thus we haveassumedn ~ 3 above.Particulailv in

codimensiontwo (cf. [4[, [7[, [9)), t0 E (0, b[ is definedto be a focalpoint if thereex-

ists a smooth K-Jacobi field J e V’( [3) with J(0) e T~K,J’( 0) + S~(0)J( ~ =

and J( t0) = 0. (In the terminologyof Warner[12], sucha K-Jacobi field is called a

strong-K-Jacobifield in highercodimension).
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The usual submanifoldindex form ‘(bK) : V~(f3,K) x V~-(f3,K) —, R may be

defined for X,Y E V’(8, K) by

I(b,k)(X,Y) : = g(Sp~(o)X(0), Y(0))

(2.1)
— / (g(X’,Y’) — g(R(X,/3’)f3’,Y))dt.

Jt=O

As in the null conjugatepoint case(cf. [4, section9.3]), this particular index form
(2.1) is not immediately useful in characterizing K-focal points. For instance,if f
[0,b] —R is any smoothfunctionwithf(0) = 0, then Y= ff3’ E V1([3,K) and

I(b,K)(X,Y) = 0 forall X e V~-([3,K).But suchavectorfield Y = ff3’ isasmooth
K-Jacobi field in V

0
1(/3, K) if f 0. For this reasonaswell asto prove theindex

theorem,we will work with the quotientindexform ‘(bK) as in [7], [3], [4, chapters9,
11). We thenneedto briefly reviewthisconstruction,asdetailedfor the conjugatepoint
casein [4, Section9.3J.

Let

[/3’(t)] = {)~/3’(t); )~~ R} foranyt E [0,bI,

[~3’]= U{[3’(t)]; 0 <t < b},

(f3’(t))’ = {v ~ Tfl(~)M; g(v,8’(t)) 0},

NCt3) = U{(f3’(t))’; 0 <t < b},

G(/3(t)) = ______

and finally thequotientbundle

G(/3) = U{G(/3(t)); 0 <t < b}.

Wehaveprojectionmapsir : N(/3(t)) —‘ G(/3(t)) givenby ‘ir(v) = v+ [/3’(t)] and
N(f3) —~C(/3)givenby .,r(X)(t) = X(t)+ [8’(t)] forall t e [0,b]. Asin[4,

section9.3], let x(13) denotethe piecewisesmoothsectionsof G(f3) and xoC8) =

{V E x(/3); V(b) = [/3’(b)]}. In our context, let x(13, K) denote the piecewise
smoothsectionsV : [0,b] —* C(/3) suchthat V = ~r(X) for some X E V1(/3,K)
and Xo(13, K) = {V E x(13, K) : V(b) = [/3’(b)]}. We then have the restrictionof

theprojectionmapir: V1(/3,K) —~~(/3,K) stillgivenby ir(X) = X+ [/3’]. Note
also that for X,Y E V-’-(B,K), we have ir(X) ir(Y) iff X = Y + ff3’ for a
piecewisesmoothfunction f: [0,b] —~ R with f(0) = 0. Thus ir(X) = ir(Y) for

X,Y E V-0(/3,K) implies X(0) = Y(0).
Onethenobtainsapositivedefinitequotientmetric ~, covariantderivativeoperator

D andcurvaturetensor R for x(13,K) as in [7], [4 section 9.3]. Given V, W e
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X([3,K), set ~(V,W) ‘g(X,Y),V’()) = D4,V(f) = 70)D4,XU)) and R(V,[3’)
[3’ = n(R(X, [3’)[3’) where V = ir( X) and W = 70(Y). Moreover,we extendthe

secondfundamentaltensor~4’(O) to the quotientbundleconstructionas

DEFINITION 2.2. Given V e x([3, K), define S4(o)V(0)F 70(T~K)by S4(O)V(0)
:= n(S4(Q)X(0)) = S4(0)X(0) + [3’(O)I where V = 70(X),X F V’([3,K). (Our

definition of S4(o) is well definedsinceif Y E V~-([3, K) with 70(X) = ~(Y) = V

then X(0) = Y(0) as notedabove). .

Recall that aJacobiclass V in C([3) is a smoothvectorclasssatisfyitig thediffer-

ential equation V” + R( V, 8’)[3’ = [ 3 [. With the abovemachineryin hand,we may

now makethe following

DEFINITION 2.3. A (smooth)Jacobiclass V e x([3, K) is a K -Jacobi classif V

satisfiestheboundaryconditions
(i) V(0) F

tii) S4(0)V(0) + V’(O) ~ 70((T~K)’).
A K-Jacobi class is said to be a strong K-Jacobi classit, V( 0) C 71) T0K and

S4 (0) V (0) + V‘(0) = [3’(O) [. .

It is then easyto check that V is a K-Jacobi classalong [3 iff thereexists a

K-Jacobi field J ~ V~-([3, K) (as definedin Dcfn. 2.1) with V = o~(I). Thus these

two definitions areconsistent.Second,it may be shownthat if k = dim K = nfl 2,

then every K-Jacobi classalong [3is a strong K-Jacobi class(cf. [II, Proposition

2.121). Finally, it is alsoconsistentwith Definition 2.1 to adoptthefollowing.

DEFINITION 2.4. t~E (0, b[ is a K-focal pointalong [3if thereexistsanontrivial

K-Jacobi classV e x([3, K) with V( ~) = [3’(~) [ F G([3(f,~H. .

Thequotient indexform ‘(bK~ S ~([3, K) ~ ~( [3, K) —* R maynow bedefinedfor

V,WE~(13,K)by

I(SK)(V, W) : = ~(S4(Q)V(0), W(0))

(2.2)
/ (~(V’,W’)—

Jt~0

andit follows that if V = n(X), W = 70(Y) with X, Y C V’( /3, K), then ~(& K)

(V,W) =

Workingalongthelinesof [7[, [4, p. 315], Kim[ll,Theorem 3.3] hasestablishedthe

following basicresultthatthequotientbundleindexform characterizesK-focal points.
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THEOREM2.5. For W E xoCB,K) thefollowingare equivalent:

(a) W isa K-Jacobi classi.nxo(/3,K),

(b) l~b,K)(~’,Z)_OforanyZEx
0(13,K).

As in the conjugate point Morse theorem for null geodesicsegmentsin [3], wewant

ultimately to relatethe indexof ‘(bk) to K-Jacobi fields and K-focal points along /3
eventhqugh the index theorem will be proven using K-Jacobi classes.Thus oneneeds
to notethefollowing analogueof Lemma9.53 in [4, p. 300].

LEMMA 2.6. Let W e x(/
3, K) be a K-Jacobi class with W(t

0) = [/3’(t0)] for
somet0 >0. Then thereexistsaunique K-Jacobi field J E V

1(/3,K) with W

ir(J) and J(t
0)=0.

Now let

= {K-Jacobi fields J ~ V’(f3,K); J(t0) = 0)

and

= {K-Jacobi classesJ F x(13,K); V(t0) =

Asaconsequenceof Lemma2.6,we obtain

COROLLARY 2.7. Theprojectionmap ir: J~.(/3) —~ ~ (/3) is anisomoiphism. .

Finally thefollowing generalizationof awell knownconjugatepoint result (cf. War-
ner [13,p. 603]) isneededfor the proof of the Morse Index Theorem in Section4. Let

A~(t) {V(t); V E x(1
3, K) is a K-Jacobiclass)c G(/3(t))

and

B~(
1)={V’(t); V e xCt

3, K) is a K-Jacobi classwith

V(t) = [~3’(t)]} c G(/9(t)).

Thenfor any t E [0,b],

(2.3) Afi(t) ~ B
4~= G(13(t)).

Especiallyfor t= 0, this equationreducesto A$(t) = 7r(T~K),B,8(~)=
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SECTION 3: THE FOCAL INDEX FORM

We wish to obtain a Morse index theoremin the caseof an arbitrarynull geodesic

segment /3 : [0,b] —+ (M,g) which is perpendicular at p = /3(0) to a spacelike

submanifold K1 andperpendicular at q = /3(b) to a second spacelike submanifold

K2. In this setting, the relevant spaceof vector fields to considerwill be denotedby

V’(f3,K1,K2) = {Y E V
1(~3);Y(0) ET~K

1andY(b)ETqK2}

and the index form ‘(bKK2) : V~-(/3,K1, K2) x V’(B, K1, K2) —~ IR is given for

X,Y F V’(/3,K1,K2) by

‘(bK, ,K2)(X, Y) : = g( S
1 (X(0)) , Y(0)) — g( S2(X( b)), Y(5))

(3.1)
— / (g(X’,Y’) —

~/1=0

where S1 : T~K
1—* T1,K1 and S

2 : TqK
2 T~K~denote the secondfundamental

forms

S
t(v) = S

4(O)Vand S
2(w) = S

4(b)W

for v F T~K,, w E TqK2 associatedto K1, K2 in the directions /3’(O) ,B’(b) re-

spectively. We may furtherrestricttheprojectionmap it: V
1(/3,K

1) —* x(13,Ki) of

the quotient bundle G(~3)defined in Section2 and set

=

= {V F ~(/3,K1); V(b) F 7T(TqK2)}.

As discussedin Section2, the index form ‘(b,K,K2) will not characterizeJacobifields

J which are K1-Jacobi fields at /3(0) and K2 -Jacobi fields at /3(b). Thus as in the

conjugatepoint null indextheorem([3]), we work with aquotient indexform

‘(b,K,K2) ~(/3,Kt,K2) x ~(/3,K1,K2) .. R

givenfor V,WE~(/3,K1,K2)by

= ~(S
1(V(0)),W(0)) — ~(S2 V(b)),W(b))

(3.2)
— / (~(V’,W’)—~(R(V,/3’)/3’,W)dt

Jt=0
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Here weuse thequotientmetric ~, covariantderivative .0 and curvaturetensorR as

definedin Section2. Also if X E V~-(/3,K1, K2) with’ V = ir(X), then

:= Sff(O)X(O) + [/3’(O)] = 7r(Sfl~(0)X(O))

and

Sp(b)X(b) + [/3’(b)] = 7r(Sfi~(b)X(b)).

Noticethat thenullity of the index form (3.2) isexactlythespaceof K1 -Jacobiclasses

that aresimultaneouslyK2-Jacobi classesalongthe geodesic13(t) = /3(5 — t). Also,
with our choiceof sign conventionon the index form, ‘(bK,) is negativedefinite on

Xo(/
3, K

1) up to the first K1-focal point. Thus it makessenseto define

DEFINITION 3.1. The index 1(/3,K1, K2) of the quotientindex form ‘(bKK) ~

x(1
3, K

1, K2) is definedto be

1(13,K1, K2) = sup{dim A; A C x(/
3, K

1, K2) is an R-vector

subspaceon which ‘~K,,K2) is positivedefinite).

.
In [8,Proposition3.7], the finitenessof I(~3,K1, K2) for arbitrary /3,K1, K2 was

establishedusingthe classicalpiecewisesmoothJacobifield approximationtechnique,
and the maximality of thequotientindex form with respectto Jacobiclassesup to the
first K1-focal point.

SECTION4: THE MORSEINDEX THEOREM

Let (M, g) bean arbitraryLorentzianmanifold of dimension n ~ 3 andlet /3
[0, b] —* (M, g) be a null geodesicsegmentwhich is orthogonalat p = /3(0) to a

spacelikesubmanifold K1 of dimension k1 andorthogonalat q = /3(5) toa spacelike

submanifold K2 of dimensionk2. As the K~are spacelikeand g(/3’(O),j3(O)) =

g(/3’(b),/3’(b)) = 0, we have /3’(0) ~ T1~K1and /3’(b) ~ T~K2.Also, k1,k2 <
n — 2. Finally we may reparametrizethe null geodesic/3 andthustake b 1. Fur-

ther, in orderto adaptKalish’s proofmethodto our quotientbundlesetting,we needto
assumethat t0 = S = I is nota K1-focal pointto t = 0, or in greatergeneralitythat
7r(TqK2) c A$(I), rememberingdecomposition(2.3).

Recalling that V”(/3,K1,K2) = {Y E V’(/3); Y(0) E T~K1and Y(l) E
T~K2}and xCB,Ki,K2) = {V F x(1

3); V(0) e ir(T~K
1)and V(l) E

considerthe R-vectorsubspace~R.of x( /3, K1 , K2) given by

7?.= {K1 —JacobiclassesVEx(/3,K1);V(1) �ir(T~K2)}.
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In view of (2.3), since t~.= I is not a K1-focal point, 1~0. Also, motivatedby
(3.2), definethefollowing functional S : ~Rx 1~?.—~ R for V, W F 7~by

(4.1) S(V,W) = ~(V’(l) + S
2(V(l)),W(l)).

Fix t
1 , t2, . . . ,t~ with 0 <t1 <t2 .( ... < t~ < 1 suchthat /3(t1),/3(t2),... ,/

3(~k)

are the K
1-focal points to t = 0 along /3. (In view of Prop. 3.7 of [8] with K2 =

{q}, thereareonly finitely many K1-focal points to t = 0 along /3). Let m~:=

dim J~(/3) = the multiplicity of the K1 -focal point /3( ti), i.e., the dimensionof the
spaceof smooth K1 -Jacobi fields along /3 which vanishat t,, (recall Corollary 2.7
here).Then the index theoremwe wish to obtain maynow bestated.

THIEOREM4.I. Let /3 : [0,11 —a (Mg) beanullgeodesicsegmentin an arbitrary
space-timeofdimensionn ~ 3 and let K1, K2 be spacelikesubmanifoldsofdimen-

sion < n — 2 which are peipendicularto /3 at p = /3(0) and q = /3(1) respec-
tively. Supposefurtherthat t = I is not a K1 -focal point to t = 0 along /3 (or that

IT(TqK2) C A4~1~).Then

Ind(I($KK)) = dim ~~(/3)+ Ind(S)
tE(O 1)

Here Ind (S) = sup{dim 13; 13 is a k-vector subspaceof 7~.on which S ~ is

negativedefinite }.

As in [3], in view of Corollary2.7,it sufficesto work with Jacobivectorclassesand

‘show that

Ind(I) = dim ~~(/3)+ Ind(S)
t~(O,1)

= Ind(S).

Hereand in thesequelwewill denote ‘(fl,K,,K2) by 1.
Let {X1 , X2,... , X,~ } be a basis of (n — 2) linearly independentK1 -Jacobi

classesalong /3. Thesemaybeconstructedasfollows. Let 17 F (T~KI) ~- bea null vec-
torwith g( ~ /3’(0)) = —1 and set r = k1 = dim K1. Since g is a Lorerit.zian(nonde-
generate)metric on (T9K1Y’, we may find orthonormalspacelikevectorser+1 ,

in (T~K1)’suchthatSpan {er÷1 e~_2}flSpan{17,/3’(O)} = {0}. Let
e1 er F T~K1be orthonormalspacelikevectors. Then theset {e1,... , e~,er+I,

e~_2) of spacelikevectorsin T~Msatisfies g( e,, e,) = ~, q( e~,/3’(O)) =
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g(e1,17) = 0 for all i,j. Let Y1 be the unique Jacobifield along /3 satisfyingthe
initial conditions Y5(0) = e3,l’7(0) = —Sfi(o)eJ for ‘1 < j < r andsatisfyingthe

initial conditionsY,(0) = 0, l’7( 0) e3 for r + I < j < n — 2. Thenthe
are spacelike K1 -Jacobi fields along /3, and if we set X5 := 7r(~) e x( /3, K1),

thenthevectorclasses{X1, ... , ~ arelinearly independentK1 -Jacobi classesin

Considerin view of decomposition(2.3),the vectorsubspaceA of x( /3, K1, K2)

given by

A={Vex(/3,K1,K2);V(1)=[fi’(l)]and

V(t~)E ~ for 1 < i < k}.

It is known that A may be consideredas A = {V(t) = ~ f~(t)X5(t); V(1)

[/3’(l)] and f3 : [0,1] —~R arepiecewisesmooth}, whencefor V E A,onehas

I(V,V) = _f~(~f~x1~~f~X5) dt

whichisnonpositivesincetheprojectedmetric ~ ispositivedefinite. Hencetocalculate

theindex of I, wewishto decomposex(/3, K1, K2) as

xC8,K1, K2) = A ~

where AC = Ac ~ A~is finite dimensional,I is negativesemidefiniteon A ~ Ac,

ispositivedefiniteon A~., and

dim(A~) = ~m~+ md(S).

As an intermediatestepin this construction,we needto <diagonalize>>S: ~1?.x 1~.—~

JR with respectto the positivedefinite metric ~ using eitherthe hypothesis<<t = 1
is not a K1-focal point>> or the hypothesis<<ir(T~K2) C A~~>>as follows. Choose

a = k2 = dim K2 linearly independentK1 -Jacobiclassesj1~... ~T3in x(/3, K1) so
that

(i) {J1(1), ...,J3(l)) span ir(T~K2),

(ii) S is negativedefiniteon SpanR{JI,... ~N} with N Ind(S) as defined

in thestatementof Theorem4.1, and

(iii) S is positivesemidefiniteon SpanR{JN+l,... , J8}. (This lastspaceincludes
the K1, K2-Jacobi classeswhichconstitutethenull spaceoftheindex form I.) A basic
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identity in this setting forV a smooth Jacobi class along /3 and W F ~(/3, K1, K2)

arbitrary may be written as

I(V,W) = ~(V’(0) + S
1(V(0)),W(0)) — S(V,W).

Hencewe obtain I > 0 on SpanR{Jl JN} and I < 0 onAc := SpanR{JN÷l,

f
5}. Also standardcalculationsusing V( I) = ]/3’(l)] if V F A show that

I(A,Afl = 0. Thus as I is negative semidefinite on both A and AC , we have

I negative semidefinite on A ~ Ac.
It now remainsto definea finite dimensionalsubspaceA~of x( /3, K1, K2) with I

positivedefiniteonA~and ~(/3,K1,K2) = ~ Thismaybeaccomplished

as in [10] usingthedecompositionA4(t) ~ = G(f3(t)). Specifically, let Y~F

x( /3, K1) be K1 -Jacobi classeswith 1’,~(t,) = F /3’( t~)I for j, = 1,2 rn, =

dim
1~.(/3) and {Y,~

3.(t,)}~’1a ~-orthonormal basisfor B4~~>for i = 1,2 k.
Let be the smooth parallel vector class in ~(/3)with Z,,.(t1) := Y,(t,) for

= 1,2 k and j~= 1,2 to,. Furtherconstructfor i = I k smooth

bump functions 1, : [0, 1] --a 1 0, 1] with mutually disjoint support such that ~( t,) =

0, ~(t~) = I, as in Figure 1 of [10, p. 344]. Then define vector classesV~F

x( /3, K1) for a positive parameter )~ > 0 to he chosen later to make the index positive

definite on thespanof the ‘s asfollows:

— f 1’~3(t)+ >~(t)Z,3(t) ifO < <t,
— ~ ~(t)Z~(() ift, < < 1.

Nowlet A~C ~(/3,K1) begivenby

= Span{V~1, Jq; i = 1,2, . . . , k,j~= 1,2 rn, q =

It

= 1,2 N)

Just as in [10], onechecksreadilyusing decomposition(2.3) that dim A~= ~ rn~+

lnd(S).

Standardcalculationsshowthat

I ~ ~/3kJ~) = 0

wherethe J~’s arethe K1 -Jacobi classesdiagonalizingS chosenabove. Since the

~~‘s and Z~,‘s are given, onemay checkas in [10, p. 347] that for some ~ > 0

sufficientlysmall, I is positivedefinite on Span~{V,)}. Hence, I is positivedefinite

on Ac,
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NowsetAC := AC~Ac, Asin[10,p. 5441,itiseasytocheckthatAflA’ = {0}
WeneedtoshowthatAq~A’=x(13,K1,K2). Thus supposeWEX(/3,K1,K2) is

arbitrary. First, write W( I) = ~ )~.,J5(l)for )~,E R. Then at each K1-focal point

t~,write W(t~)= + y~E G(/3(t~))with ; e ~ and ~ E ~ Expand

= > .X~V~(t<)usingthefact that {Z~~(t~)}forms a basis for
13~(t,)~Then

U := ~ + ~ )~V~is anelementof Ac. Also, V := W — U has the

pmpertiesthat V(l) =[j3’( 1)] and V(t~)E A,~(t.)for 1 < i < k. Hence V E A
ar~IW=V+UEA~3Ac asrequired.

Finally we havex(13,K
1, K2) = A ~ A’ = (A ~ A~)eA~with I restricted

to (A ~ Ac) x (A ~ Ac) negativesemidefinite, I restrictedto A~ x A~ positive
k

definite, and dim (A~)= + md (S). It follows that md (I) = dim (A~) =

k
~m~+Ind(S) asrequired. .
1=1

Vector fields definedlike the vectorclasses also play animportantrole in the

developmentof thetraditional Morsetheory,cf. [4,pp. 256-257] for astandardexample.
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